A canonical form for controllable singular systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a hybrid quantum controller for strongly eigenstate controllable systems

 In this paper, a new quantum hybrid controller for controlling the strongly eigenstate controllable systems, is designed. For this purpose, a Lyapunov control law is implemented when the target state is in reachable set of the initial state. On the other hand, if the target state is not in the reachable set of the given initial state, based on Grover algorithm, a new interface state that the t...

متن کامل

Feedback canonical forms of singular systems

Ex = Ax + Bu (1.1) where x e 3C ~ R" e % ~ R, (E, A, B)e R x R x R. Note that E and A are non square. We can always assume without loss of generality that B is monic. In the sequel, (1.1) will be referred to by the triple (E, A, B). Now, let I denote the set of all such (E, A, B)'s. Define T P D = {(W, V, G, FP, FD)eR qXq x R x x R x R x R with W, F a n d G non singular}. The action of this gro...

متن کامل

On the Kronecker Canonical Form of Singular Mixed Matrix Pencils

Dynamical systems, such as electric circuits, mechanical systems, and chemical plants, can be modeled by mixed matrix pencils, i.e., matrix pencils having two kinds of nonzero coefficients: fixed constants that account for conservation laws and independent parameters that represent physical characteristics. Based on dimension analysis of dynamical systems, Murota (1985) introduced a physically ...

متن کامل

Holomorphic canonical forms for holomorphic families of singular systems

In this paper we obtain a canonical reduced form for regularizable singular systems and we describe generic holomorphic families that permit us, to analyze the neighborhood of a given system. Key-Words:Singular systems, Feedback equivalence, Canonical form, Miniversal deformation.

متن کامل

Determining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form

A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Systems & Control Letters

سال: 1989

ISSN: 0167-6911

DOI: 10.1016/0167-6911(89)90003-0